

Georges-Köhler Allee, Geb. 51 D-79110 Freiburg lausen@informatik.uni-freiburg.de schaetzl@informatik.uni-freiburg.de zablocki@informatik.uni-freiburg.de

Advanced Information Systems Summerterm 2011 29.07.2011

7. Exercise Sheet: Colored Petri-Nets

Submission: 04.08.2011 Discussion: 04.08.2011

Submission Guidlines: We will discuss the solutions to the exercise sheet on 04.08.2011. If you want to have comments on your solutions you can submit them after the lesson.

Exercise 1 (Petri-net modelling)

A small model railway has a circular track with two trains *a* and *b*, which move in the same direction. The track is divided into seven different sectors $S = \{s_1, \ldots, s_7\}$. At the start of each sector a signalpost indicates whether a train may proceed or not.

To allow a train to enter a sector s_i it is required that this sector and also the next sector are empty.

- a) Describe the train system by a eS-net. Each sector *s_i* may be represented by three places *O_{ia}* (sector *s_i* occupied by *a*), *O_{ib}* (sector *s_i* occupied by *b*) and *E_i* (sector *s_i* is empty).
- b) Describe the same system by a colored Petri-net where each sector is described by two places O_i (sector s_i is occupied) and E_i (sector s_i is empty).
- c) Now use only two places *O* and *E*.

Exercise 2 (Folding of Petri-nets)

Fold the following eS-net (producer-consumer) such that it has only one place and one transition:

Exercise 3 (Unfolding of colored Petri-nets)

Unfold the following colored Petri-net:

Hint: C maps each place/transition to a set of "colors", i.e. a blue t_1 is different from a yellow t_1 .